
10/10/21 20.57 Copy of Emotion Recognition 01.ipynb - Colaboratory

https://colab.research.google.com/drive/1RE0C67bBXmSBXYAjUmyzjewzH2DRARQT#printMode=true 1/13

Steps to run this code

1. Install Anaconda (a free and open-source distribution of the Python and R programming
languages for scienti�c computing, that aims to simplify package management and
deployment), follow the steps in this following link https://www.anaconda.com/distribution/,
pick the package suitable to your OS

2. Install wordcloud library https://anaconda.org/conda-forge/wordcloud or
https://pypi.org/project/wordcloud/

3. Download the dataset from http://saifmohammad.com/WebPages/EmotionIntensity-
SharedTask.html

Emotion Recognition (EDA and Text Pre-Processing)

Load Training Data

 text label intensity
id
30000 Just got back from seeing @GaryDelaney in Burs... joy 0.980
30001 Oh dear an evening of absolute hilarity I don'... joy 0.958
30002 Been waiting all week for this game ❤ ❤ ❤ #ch... joy 0.940
30003 @gardiner_love : Thank you so much, Gloria! Yo... joy 0.938
30004 I feel so blessed to work with the family that... joy 0.938
30005 Today I reached 1000 subscribers on YT!! , #go... joy 0.926
30006 @Singaholic121 Good morning, love! Happy first... joy 0.924
30007 #BridgetJonesBaby is the best thing I've seen ... joy 0.922
30008 Just got back from seeing @GaryDelaney in Burs... joy 0.920
30009 @IndyMN I thought the holidays could not get a... joy 0.917
30010 I'm just still . So happy .\nA blast joy 0.917
30011 It's meant to be!! #happy #happy joy 0.917
30012 💥⚖Yeah‼ PAUL‼ ⚖💥 #glorious #BB18 joy 0.917
30013 My morning started off amazing!! Hopefully the... joy 0.917
30014 😱 @cailamarsai you've had me 😂 😂 the whole tim... joy 0.900

import pandas as pd
import numpy as np
import string

cols = ['id','text','label','intensity']

anger = pd.read_csv('anger_train.txt', header=None, sep="\t", names= cols, index_col=0)
fear = pd.read_csv('fear_train.txt', header=None, sep="\t", names= cols, index_col=0)
sad = pd.read_csv('sadness_train.txt', header=None, sep="\t", names= cols, index_col=0)
joy = pd.read_csv('joy_train.txt', header=None, sep="\t", names= cols, index_col=0)

print (joy.head(20))

https://www.anaconda.com/distribution/
https://anaconda.org/conda-forge/wordcloud
https://pypi.org/project/wordcloud/
http://saifmohammad.com/WebPages/EmotionIntensity-SharedTask.html

10/10/21 20.57 Copy of Emotion Recognition 01.ipynb - Colaboratory

https://colab.research.google.com/drive/1RE0C67bBXmSBXYAjUmyzjewzH2DRARQT#printMode=true 2/13

30015 @iamTinaDatta love you so much #smile 😊😊 joy 0.896
30016 @WyoWiseGuy @LivingVertical however, REI did o... joy 0.896
30017 2 days until #GoPackGo and 23 days until #GoGi... joy 0.880
30018 @TheMandyMoore You are beyond wonderful. Your... joy 0.879
30019 @luckiiCHARM_ Luckii, I'm changing in so many ... joy 0.877

 id text label intensity
0 10000 How the fu*k! Who the heck! moved my fridge!..... anger 0.938
1 10001 So my Indian Uber driver just called someone t... anger 0.896
2 10002 @DPD_UK I asked for my parcel to be delivered ... anger 0.896
3 10003 so ef whichever butt wipe pulled the fire alar... anger 0.896
4 10004 Don't join @BTCare they put the phone down on ... anger 0.896
5 10005 My blood is boiling anger 0.875
6 10006 When you've still got a whole season of Wentwo... anger 0.875
7 10007 @bt_uk why does tracking show my equipment del... anger 0.875
8 10008 @TeamShanny legit why i am so furious with him... anger 0.875
9 10009 How is it suppose to work if you do that? Wtf ... anger 0.875
10 10010 im so mad about power rangers. im incensed. im... anger 0.667
11 10011 Wont use using @mothercareuk @Mothercarehelp a... anger 0.854
12 10012 Bitches aggravate like what inspires you to be... anger 0.854
13 10013 Why does @dapperlaughs have to come to Glasgow... anger 0.938
14 10014 Fuking fuming 😤 anger 0.854
15 10015 Zero help from @ups customer service. Just pus... anger 0.854
16 10016 @ArizonaCoyotes not to mention the GRA guy sto... anger 0.854
17 10017 I hate my lawn mower. If it had a soul, I'd co... anger 0.833
18 10018 why are people so offended by kendall he ends ... anger 0.833
19 10019 I'm about to block everyone everywhere posting... anger 0.812
fear 1147
anger 857
joy 823
sadness 786
Name: label, dtype: int64

frames = [anger, fear, sad, joy]
data_training = pd.concat(frames)
data_training.reset_index(inplace=True)
print (data_training.head(20))
data_training.label.value_counts()

punc = string.punctuation
data_training['word_count'] = data_training['text'].apply(lambda x : len(x.split()))
data_training['char_count'] = data_training['text'].apply(lambda x : len(x.replace(" ","")))
data_training['punc_count'] = data_training['text'].apply(lambda x : len([a for a in x if a i

data_training[['word_count', 'char_count', 'punc_count']].head(10)

10/10/21 20.57 Copy of Emotion Recognition 01.ipynb - Colaboratory

https://colab.research.google.com/drive/1RE0C67bBXmSBXYAjUmyzjewzH2DRARQT#printMode=true 3/13

word_count char_count punc_count

0 18 79 12

1 23 97 4

2 19 90 4

3 24 111 13

4 24 102 6

5 4 16 0

6 25 108 6

7 22 115 9

8 14 66 3

9 17 62 3

[('the', 354),
 ('to', 292),
 ('a', 272),
 ('I', 251),
 ('and', 225),
 ('of', 170),
 ('', 161),
 ('is', 154),
 ('in', 153),
 ('for', 108),
 ('my', 100),
 ('you', 99),
 ('that', 89),
 ('it', 88),
 ('on', 88),
 ('be', 83),
 ('have', 79),
 ('with', 76),
 ('not', 72),
 ('me', 67),
 ('so', 63),
 ('but', 59),
 ("I'm", 56),
 ('at', 54),
 ('get', 52),
 ('this', 49),
 ('are', 47),
 ('was', 47),
 ('when', 45),
 ('your', 45),
 ("it's", 43),
 ('all', 42),
 ('or', 42),
 ('&', 41),
 ('will', 41),
 ('just', 40),

from collections import Counter
join_text = " ".join(data_training.text)
join_text = " ".join(data_training[data_training['label']=="sadness"]['text'].values)
counter_obj = Counter(join_text.split(" "))
counter_obj.most_common(50)
print (join_text)

10/10/21 20.57 Copy of Emotion Recognition 01.ipynb - Colaboratory

https://colab.research.google.com/drive/1RE0C67bBXmSBXYAjUmyzjewzH2DRARQT#printMode=true 4/13

 ('i', 40),
 ('they', 39),
 ('can', 39),
 ("don't", 38),
 ('The', 38),
 ('do', 37),
 ('as', 35),
 ('no', 35),
 ('like', 35),
 ('#lost', 34),
 ('about', 33),
 ('-', 32),
 ('he', 31),
 ('by', 29)]

from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import matplotlib.pyplot as plt

stopwords = set(STOPWORDS)

Create and generate a word cloud image:
wordcloud = WordCloud(max_font_size=50, background_color="black", stopwords = stopwords, widt

Display the generated image:
plt.figure(figsize=(20,10))
plt.imshow(wordcloud)
plt.axis("off")
plt.show()

10/10/21 20.57 Copy of Emotion Recognition 01.ipynb - Colaboratory

https://colab.research.google.com/drive/1RE0C67bBXmSBXYAjUmyzjewzH2DRARQT#printMode=true 5/13

Text Pre-Processing

import nltk

import re
from nltk.tokenize import WordPunctTokenizer
from nltk.corpus import stopwords
tok = WordPunctTokenizer()
pat1 = r'@[A-Za-z_0-9]+'
pat2 = r'https?://[A-Za-z0-9./]+'
pat3 = r'[0-9]+'
combined_pat = r'|'.join((pat1, pat2, pat3))
stop_words = set(stopwords.words('english'))

def tweet_cleaner(data_frame):
 print ("Cleaning and parsing the tweets...\n")
 clean_data = []
 for index, row in data_frame.iterrows():
 stripped = re.sub(combined_pat, '', row.text)
 lower_case = stripped.lower()
 words = tok.tokenize(lower_case)
 filtered_words = [w for w in words if not w in stop_words]
 clean_data.append((" ".join(filtered_words)).strip())

 print ("Done!")
 return clean_data

Cleaning and parsing the tweets...

Done!

clean_data_training_list= tweet_cleaner(data_training)

data_training.text = pd.DataFrame(clean_data_training_list)
data_training.head(10)

10/10/21 20.57 Copy of Emotion Recognition 01.ipynb - Colaboratory

https://colab.research.google.com/drive/1RE0C67bBXmSBXYAjUmyzjewzH2DRARQT#printMode=true 6/13

id text label intensity word_count char_count punc_count

0 10000 fu * k ! heck ! moved fridge
!... knock landlo... anger 0.938 18 79 12

1 10001 indian uber driver called
someone n word . ' m... anger 0.896 23 97 4

2 10002 asked parcel delivered pick
store address # fu... anger 0.896 19 90 4

3 10003 ef whichever butt wipe
pulled fire alarm davis... anger 0.896 24 111 13

4 10004 ' join put phone , talk rude .
taking money ac... anger 0.896 24 102 6

5 10005 blood boiling anger 0.875 4 16 0

6 10006 ' still got whole season
wentworth watch stupi... anger 0.875 25 108 6fear 1147

anger 857
joy 823
sadness 786
Name: label, dtype: int64

data_training.label.value_counts()

data_training.to_csv('emotion_training.csv',encoding='utf-8')

1. "It was the best of times"
2. "It was the worst of times"
3. "It was the age of wisdom"
4. "It was the age of foolishness"

Vocabulary ‘It’, ‘was’, ‘the’, ‘best’, ‘of’, ‘times’, ‘worst’, ‘age’, ‘wisdom’, ‘foolishness’

BoW representation

1. "It was the best of times" = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
2. "It was the worst of times" = [1, 1, 1, 0, 1, 1, 1, 0, 0, 0]
3. "It was the age of wisdom" = [1, 1, 1, 0, 1, 0, 0, 1, 1, 0]
4. "It was the age of foolishness" = [1, 1, 1, 0, 1, 0, 0, 1, 0, 1]

Feature Extraction (Bag of Words)

['absolutely', 'accept', 'act', 'actually', 'afraid', 'alarm', 'almost', 'already', 'als

from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer(max_features=500)
X_BoW = vectorizer.fit_transform(data_training.text)
print(vectorizer.get_feature_names())

10/10/21 20.57 Copy of Emotion Recognition 01.ipynb - Colaboratory

https://colab.research.google.com/drive/1RE0C67bBXmSBXYAjUmyzjewzH2DRARQT#printMode=true 7/13

500

print(len(vectorizer.get_feature_names()))

 (0, 406) 1
 (0, 432) 1

transformed_BoW = vectorizer.transform(["The weather sure matches the mood in this state toda
print (transformed_BoW)

[[0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 0 0 0 0 0 0 0 0 0 1 0
 1 0
 0]]

print (transformed_BoW.toarray())

Tf-IDF stands for term frequency-inverse document frequency, and the tf-idf weight is a weight
often used in information retrieval and text mining. This weight is a statistical measure used to
evaluate how important a word is to a document in a collection or corpus. The importance
increases proportionally to the number of times a word appears in the document but is offset by
the frequency of the word in the corpus

TF: Term Frequency, which measures how frequently a term occurs in a document. Since every
document is different in length, it is possible that a term would appear much more times in long
documents than shorter ones. Thus, the term frequency is often divided by the document length
(aka. the total number of terms in the document) as a way of normalization:

TF(t) = (Number of times term t appears in a document) / (Total number of terms in the document).

IDF: Inverse Document Frequency, which measures how important a term is. While computing TF,
all terms are considered equally important. However it is known that certain terms, such as "is", "of",

Feature Extraction (Tf-IDF)

10/10/21 20.57 Copy of Emotion Recognition 01.ipynb - Colaboratory

https://colab.research.google.com/drive/1RE0C67bBXmSBXYAjUmyzjewzH2DRARQT#printMode=true 8/13

and "that", may appear a lot of times but have little importance. Thus we need to weigh down the
frequent terms while scale up the rare ones, by computing the following:

IDF(t) = log_e(Total number of documents / Number of documents with term t in it). (source:
http://www.t�df.com/)

['absolutely', 'accept', 'act', 'actually', 'afraid', 'alarm', 'almost', 'already', 'als

from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer_tfidf = TfidfVectorizer(max_features=500)
X_tfidf = vectorizer_tfidf.fit_transform(data_training.text)
print(vectorizer_tfidf.get_feature_names())

 (0, 432) 0.6329234562771724
 (0, 406) 0.7742143750242294

transformed_tfidf = vectorizer_tfidf.transform(["The weather sure matches the mood in this st
print (transformed_tfidf)

[[0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.

print (transformed_tfidf.toarray())

http://www.tfidf.com/

